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A B S TRACT 

An approach is suggested for the systematic investigation of mathematical models 
used to descri'be physical processes. The substance of the approach consists of reducing 
specific resuIts obtained from a model and from experiments to orthogonal response 
surfaces and comparing the regression coefficients. This polynomial representation 
displays the behavior of the model in a form that i s  much more easily analyzed than 
simultaneous differential or  integral equations, especially when the model is numerical. 
A sample application to a reactor physics problem is included. 
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SUMMARY 

A systematic procedure is suggested for locating and examining the sources of dis- 
agreement between calculations and measurements. The procedure consists essentially 
of comparing regression coefficients of orthogonal response polynomials.developed for  
calculations and measurements. 

In cases where the coefficients disagree significantly, the comparison may suggest 
evolutionary improvements in the model. The comparison may also be used to force 
agreement between the mathematical model and the physical process if all of the salient 
variables are treated explicitly. When the same forcing corrections are found for sev- 
eral different response characteristics of the same process, the source of the discrep- 
ancies between experiments and calculations can be considered to have been located and 
evaluated. 

This approach to model development may in some cases uncover information that 
would otherwise go unnoticed. A regression analysis of the type suggested also has a 
distinct economic motivation when developing numerical models. The regression poly- 
nomials display the behavior of the model in a form which is much more readily analyzed 
than an intuitively selected set of computer calculations. This report describes this ap- 
proach to model development and includes a detailed sample analysis. 

The terms calculations, model, calculational model, and calculated results, and 
similar terms used throughout the text, are synonymous insofar as they relate to the 
theoretical or analytical aspects of any scientific investigation. Similarly, the terms 
experimental data, measurements, observations, observed data, and the like, all refer 
to physical data obtained by observation. Experiment design refers to the planning of the 
investigation and applies in this report to both calculations and measurements. 



INTRODUCTION 

In the course of investigating some physical process, recourse is frequently made 
to models which simulate the process. The model is usualJy chosen so that certain of 
the physical variables interact in the model according to physical theories which de- 
scribe the process. The primary advantage of using a model is that it provides informa- 
tion that is usually much less expensive to generate than when full-scale experiments are 
performed. Also, models frequently provide insight into the interrelations between 
variables that is not readily obtained with full-scale tests. 

Models may take several forms. They may differ only in size from the full-scale 
process. Reaction kinetics, for example, is frequently studied using scaled-down 
chemical reactors. Compressible flow over immersed bodies, on the other hand, is 
usually studied using wind tunnels in which a physical analogy is retained by preserving 
certain similarity parameters such as Mach and Reynolds numbers. One class of 
models which has found more widespread use than any other is the class called mathe- 
matical models. This model is the familiar representation of the physical process by 
sets of equations which embody the physical theory. Such models are used in virtually 
every phase of scientific investigation. In some areas they are indispensable. The de- 
sign of atomic devices o r  the prediction of nuclear power reactor lifetime, for example, 
would not be experimentally feasible. 

Mathematical models may range from simple equations to more complex sets of 
simultaneous relations which incorporate experimentally derived constants and which 
must be used with computing machinery. The behavior of simpler mathematical models, 
such as closed-form solutions, is readily analyzed by inspection in most cases. More 
complex mathematical models involving numerical methods, however, are not so easily 
understood because a computer solution is nothing more than a set of values that satis- 
fies the governing finite difference equations. Thus, the exact dependence of the calcu- 
lated results on the input is not generally known and, in fact, must be computed for each 
different configuration. 

This lack of insight, especially with numerical models, leaves the investigator in a 
position of ignorance as to the source of e r ro r  in his model when his calculations do not 
agree with experimental data. To obtain the desired agreement, he must adjust (develop) 
his model in some way. When the system under study is complex, development of the 
model frequently becomes, in practice, an intuitive procedure. A common intuitive ap- 
proach, for example, is to examine several cases in which single parameters are varied 
one at a time. Based on the sequential results, some judgment is exercised after each 
investigation as to what constitutes an improvement in the model. This judgment is then 
used as a guide in the selection of subsequent investigations. 
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Intuitive methods such as this usually arise from an inherent complexity found in 
many mathematical models. For complex systems, several approximations are f re- 
quently employed simultaneously, and an economically feasible systematic plan for eval- 
uating each approximation and its interplay with the other approximations does not nor- 
mally suggest itself. 

Intuitive developments, however, can be expensive, are unsystematic, and can 
easily lead to wrong conclusions. Further, they may be inadequate for the process being 
studied. Strong interactions between variables could go unnoticed. What is needed for 
model development is a more systematic, logical, and relatively inexpensive method 
which locates the cause of the disagreement between calculations and measurements and 
enables physically realistic corrections to be made. The description and use of such a 
method is the subject of this report. Although the presentation assumes the development 
of mathematical models, similar procedures could be used with nonmathematical 
models. 

The method which is discussed herein makes use of a statistical experimentalde- 
sign tool known as regression analysis. This technique is frequently used with processes 
which are too complex to treat analytically. Examples of such processes are agricul- 
tural and chemical yield o r  material flow in manufacturing operations. Regression anal- 
ysis is also frequently used to obtain analytical representations of experimental data. 
The product of such an analysis is a response polynomial in which the effects of iden- 
tified independent variables and their interactions appear as coefficients. An additional 
motivation behind such an experiment design is to make efficient use of the experimental 
data. Effects of intermediate values of the variables are obtained by inference from the 
response polynomial. The main intent, then, of regression analysis of measured data 
is to provide a mathematical french-curve to represent the data without particular re- 
gard for the physical mechanisms underlying the results. 

Regression analysis has also been used to some extent for calculations. The moti- 
vation here is to replace several simultaneous equations by a single equation. The cal- 
culations, or "synthetic experiments" as they are sometimes called, are performed 
using specific values of input parameters. The results of the calculations are repre- 
sented by one or more response polynomials. Thus, calculations involving intermediate 
values of the input parameters need not be performed. This can result in  a considerable 
savings in computing costs. Efficiency is the underlying purpose in this case. 

regression analysis to both the calculational model and the experiments, considerable 
In essence, the method to be discussed suggests that by simultaneous application of 

3 



insight into the capability and effectiveness of the model can be obtained. A term-by- 
term comparison of the regression coefficients for the model and the expe 
identify the shortcomings of the model. This identification can then be used either to 
improve basic model parameters or to provide effective corrections to the existing pa- 
rameters. This transformation of model and observed physical behavior into regression 
polynomial form displays the behavior of both model and experiment in a form which is 
readily analyzed. First-order, second-order, and possibly higher-order effects, as 
well as interaction effects of all independent variables, are completely separated if the 
experiment design is orthogonal. The extent to which a particular set of coefficients 
agrees or  disagrees can be taken as a measure of model adequacy for the particular 
variable whose effect is indicated by these coefficients. This direct indication of the 
source of discrepancy between model and experiment could be much more revealing than 
an arbitrary comparison between calculations and experiments. 

The qualitative information obtained provides a basis for systematic examination of 
the equations and physical parameters that comprise the calculational model. In the in- 
terest of providing effective forcing corrections to the model, the fact that the poly- 
nomial demonstrates the model behavior is useful. If the model predicts the correct 
average behavior (pure constant term in the polynomial), the response may be corrected 
by adjusting an independent variable using the correction fi derived in appendix A. If 
the model does not predict the correct average response (at the zero coded level of all 
independent variables), a further modification can be made to the independent variables 
to account for their individual contribution to the er ror  in the constant term. This is 
also discussed in appendix A. 

If response polynomials for several dependent parameters are constructed from the 
same set of measurements and calculations, forcing corrections can be obtained for each 
set .  If these corrections are the same or  nearly the same, the investigator can feel con- 
fident that the discrepancies between model and experiment have been located and evalu- 
ated. If the indicated corrections are not similar (they probably will not be exact be- 
cause of the behavior or inherent e r ro r  in the polynomial fits), then using any particular 
set can be viewed only as a correction for the associated parameter. In this case, it may 
cause arbitrary behavior of the model with respect to the other dependent parameters. 

R EGRES S ION TRANSFORMATION 

The regression transformation is essentially an orthogonal fit of data taken from 
specific calculations or measurements. Detailed discussions of regression methods can 
be found in reference 1. The discussion that follows is intended to abstract the salient 
properties of regression analysis as it applies to the ideas suggested in this report. It 

4 



thus provides all information necessary to generating regression polynomials but does 
not include any derivations. Only the second-order f i t  in n independent variables is 
discussed. A second-order f i t  would be adequate for a wide range of applications. For 
more complex fits, reference 1 should be consulted. 

The regression polynomial has the form 

+ A 1 3 ~ 1 ~ 3  + . . . + A In x 1 x n + A 2 3 ~ 2 ~ 3  + A 24 x 2 x 4 + . . . . + A n - l , n ~ n - l ~ n  ( 1) 

where 

Q dependent variable of interest 

X I ,  X2’. 9 xn coded values of selected independent variables 

A ~ 7  An> Ann regression coefficients 

The coefficients in equation (1) are obtained by using 

m n 

j= 1 
A. =I Qi - K 

Ajj 
1= 1 

An = 

m 
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An- 1, n 5) 

m 

In equations (1) to (6) 

observed value of Q from Zth experiment (or calculation) Qi 
2 experiment (or calculation) number 

m 

kd2 lation) 

n 

total number of experiments (or calculations) 

fixed coded value of nth independent variable for Zth experiment (or calcu- 

total number of independent variables 

The coefficients given by equations (2) to (5) are associated with a particular type of 
fractional factorial experiment design called an orthogonal composite design (ref. 2). 
Only this design is discussed herein because several of its features make it one of the 
most attractive (see ref. 1 for other possible designs). The orthogonal composite de- 
sign is particularly attractive because the coefficients may be evaluated without com- 
juting machinery. And the required number of experiments with this fractional facto- 
rial design is considerably less than with a full factorial design. Also, the orthogonality 
of the design guarantees separation of effects so that analysis by coefficient comparison 
is meaningful. 

When performing the required experiments (or calculations), the coded variables 
are assigned particular values for each experiment (or calculation). These values, 

or levels as they are frequently called, are chosen from a diagram to obtain specific 
combinations and depend on the range of the variables to be studied. Diagrams and de- 
tailed discussion for several variable designs can be found in references 2 and 3. A few 
diagrams are repeated in appendix B for reference. 

First, the variables that are believed to significantly affect the parameter of interest 
The procedure for generating an orthogonal response polynomial is as follows. 
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are listed. Generally, these can be either qualitative or quantitative. A feasible size 
(number of experiments) is next assigned to the experimental program to determine 
whether regression techniques are practical. Then, in view of the limited number of ex- 
periments that are feasible, the number of variables is reduced until an experiment de- 
sign is obtained that is within the stated number of experiments available. The number 
of experiments required m as a function of the number of independent variables treated 
explicitly n is given by 

The number of independent variables in the preliminary list can be reduced in the 

(1) By assuming that certain variables do not have a strong enough effect to merit 
following ways: 

their explicit treatment (These variables would then be ignored at the risk of having 
made an incorrect assumption. ) 

to act according to known mathematical relations (Current and resistance might logically 
be multiplied together, thus making voltage the independent variable. Dimensionless 
parameters are other examples of this technique. ) 

quantitative, there are ways to treat it explicitly (ref. 1); also, however, in the interest 
of reducing the number of experiments, it can be randomized so that its effect is con- 
founded with the residual or natural random error of the experiments. This prevents 
these variables from introducing a systematic bias in the results. ) 

Once the significant variables have been selected, the range of variation over which 
the study is to be performed is chosen. This range establishes the delta 6 limits of the 
design (ref. 3). Intermediate levels are then established using linear interpolation, as 
will be shown in the example that follows. The experiments and calculations are then 
performed according to the factorial design diagram, and the polynomial coefficients are 
generated using equations (2) to (6). 

(2) By combining certain of the variables that can be expected, on physical grounds, 

(3) By randomizing certain variables (When a variable is qualitative rather than 

ERROR IN POLYNOMIALS 

Error in the fits can affect conclusions drawn from the coefficients. Some quanti- 
ties that give an indication of the ability of the regression equation to represent the ex- 
perimental (or calculational) data are as follows: 
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(Q - Q); 
1 t= 1 R2 = Goodness-of-fit parameter = 1 - 

A value of nearly 1 . 0  for this parameter indicates that the regression equation repre- 
sents the observed data well. 

0 = Standard deviation = 
m - Number of coefficients in regression equation I 
1 1 

This can be used when computing the confidence interval for the f i t  (ref. 1). Also, 
it provides some measure of the dispersion of e r ror  in the f i t .  

SAMPLE ANALYSIS 

Problem 

To demonstrate the coefficient comparison technique, an example problem has been 
chosen from the field of nuclear reactor physics. The problem is to determine the per- 
turbing e€fect on the thermal neutron flux in a slab of material having arbitrary thickness 
and nuclear properties. The quantity of interest (i. e. ,  the flux perturbation fgctor) is 
given by 

- 

(10) F - 2  40 = Spatially averaged thermal neutron flux in the slab 
Spatially averaged thermal neutron flux in absence of slab - 

q0 
(averaged over same space) 

A common condition is for the slab to be immersed in water. Thus, an infinite water 
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medium is assumed to. surround the slab. The slab is assumed to be infinite in two di- 
mensions. 

The "model" selected to calculate perturbation factors is the one-dimensional neu- 
tron diffusion equation 

/ 

which governs the neutron flux at each point in the system shown in figure 1. Symmetry 
boundary conditions apply at the right and left boundaries, and the system is assumed to 
be infinite in the dimensions normal to x. Thirty centimeters of water is an arbitrarily 

I 
,-Continuous cp 

/I and Darplax I 

Water 

I 

Figure 1. - Sample problem geometry. 

chosen distance required for the flux to recover from the effec-; of the sla,. In equa- 
tion ( l l ) ,  D and Ea are the diffusion and absorption coefficients (ref. 4). Although. the 
analytical solution of equation (11) is straightforward, it is supposed for purposes of this 
example to be obtainable only by computer calculation. 

The questions that we wish to answer are 
(1) How well does this model represent the physical situation? 
(2) If it does not work, why not? 
(3) How can it be made to work? 
Since this sample problem is intended only as an illustration, the "experiments" 

will be replaced by a more elegant model. This model will be the solution of the 
Boltzmann transport equation in one dimension over the same space (ref. 5): 

where 
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h direction of neutron flow 

Ct 

and 

thermal neutron total cross section 

The transport approximation is usually a much better representation of the physical 
problem than the diffusion model of equation (11). Thus, it can realistically be used as 
the "experiment" for illustrative purposes. 

The perturbation factor for this example problem is defined by 

LXl2 P(X)dx 

Jx/2 dx 
(13) 

Regression Model 

Inspection of equation (11) and figure 1 shows that the perturbation factor is a func- 
tion of D, Ca, and X of the slab and also of D and C, of the water through the con- 
tinuity of q and Dq' at the slab-water interface. It is assumed that the dependence on 
the water properties is small in order to reduce the number of variables to three. 

Next, the range of these variables is selected. To simplify the example, the range 
from 0. 5 to 1. 5 was arbitrarily chosen. Intermediate values were determined by using 
6 = 1. 2154 (ref. 3). These values and their corresponding coded levels are shown in 
table I. The fact that all chosen values are the same at each level has no significance. 

TABLE I. - INDEPENDENT VARIABLE VALUES FOR EXAMPLE_ 

10 

level 

1.2154 

Thermal neutron 
absorption 

cross  section, 

'a) 
-1 cm 

0.5 
.5886 
1.0 
1.4114 
1. 5 

rransport  corrected 
scattering cross  

section, 

-1 
(1 - FoFs, 

cm 

0.5 
.5886 
1.0 
1.4114 
1.5 

Slab thickness 

x, 
cm 

0.5 

1.0 
1.4114 
1.5 

.5886 



The choice at coded levels 1 and 5 was arbitrary. The absorbing slab was assumed to be 
heavy so that Po was zero (ref. 4). 

E(Ca + ZS)l-' for the absorber, we obtain the combinations shown in table 11. The con- 
stants for water were selected and are the same for all experiments. 

Next, using the orthogonal composite design shown in figure 2 and D of 

1 2 2 3 3 3 4 4 5 -Zalevel  

3 2 4 1 3 5 2 4 3 ---& level 

X level 

Figure 2. - Experiment design. Numbers in blocks are experiment 
numbers. 

TABLE II. - VALUES OF CONSTANTS USED IN DIFFUSION CALCULATIONS 

Material 

Slab 

Water 

Experiment 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

1 to 15 

Slab 
hickness, 
x, 
cm 

1.0 
.5886 
1.4114 
.5886 
1.4114 
1.0 
.5 
1.0 
1. 5 
1.0 
.5886 
1.4114 
.5886 
1.4114 
1.0 

(a) 

Thermal neutron 
cross sections 

qbsorption, 

'a 

0.5 
.5886 

1 
i 
i 

1.0 

1.4114 

1. 5 
.0195 

rransport, 

'tr 

1. 5 
1.1772 
1.1772 
2.0 
2.0 
1.5 
2.0 
2.0 
2.0 
2.5 
2.0 
2.0 
2.8228 
2.8228 
2. 5 
2.086 

Fransport corrected 
scattering cross 

section, 
(1 - 

1.0 
.5886 
.5886 
1.4114 
1.4114 
.5 
1.0 
1.0 
1.0 
1. 5 
.5886 
.5886 
1.4114 
1.4114 
1.0 
2.066 

?herma1 neutron 
diffusion 

coefficient , 
D 

0.2222 
.2832 
.2832 
. 1667 
.1667 
.2222 
.1667 
.1667 
. 1667 
. 1333 
.1667 
.1667 
.1181 
.1181 
. 1333 
. 1598 

Source functior 
in diffusional 

model, 
8 

%'Thickness of water is 30 cm. 
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Res u Its 

Solutions to equation (11) were obtained analytically, and equation (12) was solved by 
using the numerical method of reference 5. A P3S4 approximation was used. Values 
of F were constructed according to equation (13). Results of these calculations and co- 
efficient comparisons are shown in table III. 

Analysis 

Inspection of the polynomial coefficients shown in t a h  I11 provides both quantitative 
and qualitative information that is not obvious from the computed and "measured (trans- 
port)" values of F. These coefficients are also more amenable to systematic appraisal 
than intuitively or randomly chosen comparisons between measurements and calcula- 
tions. 

coefficients have (1) sign, (2) magnitude, (3) relative size compared to other coefficients 
in the same polynomial, and (4) relative size compared to the analogous coefficient in the 
opposite polynomial. When these four characteristics are considered, the coefficients 
are found to yield the following qualitative information: 

ranges of parameters studied. This suggests that the model is systematically in e r ror  
and by how much (Ao is the value of F at the origin of n-dimensional space). 

(2) A1: The model gives too large a decrease in F for a given change in Ea. This 
tendency of diffusion theory can be shown from known physics of this particular problem 
(the diffusion neutron flux is higher). The point is that this behavior was discovered 
without physical arguments. 

the x 2  variable need be explored no further. This is because these coefficients are 
within the standard e r ro r  of the fits. Had the experimental coefficients been much 
larger, some development in the model in the treatment of Cs would have been indi- 
cated. 

grounds because Ca and thickness are closely related in terms of neutron flux. 

effects of za and of thickness. This is consistent with the effects seen in AI and A3. 

interdependence than the model indicates. 

The qualitative aspect of the analysis is considered first. Generally speaking, the 

(1) Ao: The model (diffusion) calculated high F values on the average, over the 

(3) A2, A22, A12, A23: The model and experiment (transport model) both suggest that 

(4) A3: The comments for A1 apply here also. This too was expected on physical 

(5) All,  A33: These coefficients show the model overestimating the second-order 

(6) A13: This comparison shows that Ca and thickness have a somewhat weaker 
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TABLE m. - SUMMARY OF CALCULATED RESULTS FOR EXAMPLE 

Experiment I Thermal neutron f lux perturbation factors, F 

I Model Calculated regression coefficients, A(K = 0. 730) 

AO A 1  A2 A3 A11 A22 A33 

Diffusion 0.101750 -0.048707 -0.000845 -0.050208 0.017068 -0.000675 0.017561 
Transport .094349 -. 045054 -. 000427 -. 045534 .015812 -. 000705 .015315 

Calculated regression Standard Goodness-of -fit 
coefficients, A(K = 0.730) deviation, parameter, 

I? R2 
A12 A 13 A23 

Diffusion 0.000520 0.015537 -0.000235 0.00108 0.999988 
Transport .000140 .014647 -. 000155 .00118 .999973 

Diffusion model 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Exact 

0.185596 
.251756 
. 119975 
.249458 
. 116985 
. 102208 
. 187954 
.lo1009 
.068006 
.094872 
. 121624 
.052238 
. 121654 
.051082 
.068774 

Polynomial 

0. 186161 
.251286 
. 120266 
.249026 
. 117066 
. 101780 
. 188714 
. 101750 
.066668 
.099726 
. 121758 
.052886 
. 121578 
.051766 
.067763 

Exact 

0.171724 
.231429 
. 110970 
.230832 
. 109311 
.094086 
. 172417 
.093598 
.063797 
-093027 
. 111365 
.049052 
. 110887 
.048396 
.064186 

Polynomial 

0.172466 
.231328 
. 110656 
.229884 
. 109832 
.093827 
. 173200 
.094349 
.062516 
.092789 
. 111646 
.049562 
. 110762 
.049298 
.062948 

(7) A1/A3: The model and the experiment show Ca and thickness as having the 
same importance. This confirms the equivalence of Ca and thickness as treated by the 
model. 

are weighted too heavily, (2) .Z 
From this it may be inferred that forcing corrections such as those shown in appendix A 
would tend to correct the model response. 

plore the coefficient disagreement by using more fundamental investigations (a re- 
measurement of Ea for this example), or instead wishes only to adjust the independent 

In summary, the qualitative information primarily indicates (1) Ca and thickness 
is unimportant, and (3) the model calculates too high. 

S 

Use of quantitative information depends on whether the investigator wishes to ex- 
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parameters in his model to obtain the correct response. If an adjustment of parameters 
is desired, the actual calculated coefficients for measurements and calculations can be 
used, as shown in appendix A. The point here is that the source of the disagreement 
(za and thickness) has been located by the coefficient comparison method. And effective 
corrections are possible. The corrections are not arbitrary, as they might be were an 
intuitive procedure used. They are, instead, made in a logical manner and to the vari- 
ables that need correcting (and only to these). 

CONCLUDfNG REMARKS 

The philosophy underlying this approach to model development springs from the fact 
that a few causal factors can produce a relatively enormous number of effects. Com- 
puter analysis typifies this phenomenon. It is virtually impossible to analyze the effec- 
tiveness of a complex model by examination of these effects (computer output) without 
some clearcut path connecting causes with effects. The polynomials provide this path. 
Corrective measures may thus be administered to the source of discrepancies rather 
than resorting to normalization of experimental and calculated results as is frequently 
done. 

The proposed method of model evaluation and development provides a procedure 
which separates the various effects of each variable on selected responses. By compar- 
ing regression coefficients from measurements and calculations, something may be 
learned that is not intuitively obvious. This procedure can possibly be applied in pure 
research as well as in design and development. It requires only an elementary under- 
standing of factorial experiment designs, and all computations required for the fits may 
be performed by hand using the equations shown in reference 3. Skill comes into play 
only when selecting the variables and analyzing the results. This method will not re- 
place sound analytical or  physical arguments, but, in some cases, it may provide infor- 
mation that cannot be obtained in any other way. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, February 27, ,1969, 
120-27-04-54-22. 
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APPENDIX A 

DERIVATION OF EFFECTIVE Xi VALUES 

The following correction may be used to correct an independent variable so  that it 
will produce the correct (experiment) response. The derivation is shown for a second- 
order polynomial (with three variables), but it is adaptable to higher-order designs. 

The problem may be stated in two parts. First, given the polynomials 

(where the prime denotes the model), if the A. and Ab terms are alike, we want to 
select a function fi such that, for any xi, xj, and xk, 

2 2 A.x. + A..x. + A..x.x. + A. X.X = A!(f.x.) + Aii(fixi) + A!.x.(f.x.) + Aikxk(fixi) (A3) 
1 1  111 I J I J  i k i k  1 1 1  1J J 1 1  

where xi, x. and xk are the three variables involved and i # j # k. Solving equa- 
J’ 

tion (A3) for f i  gives 

b 1 2  1/2 
f .= - -&- (b  - 4c) 

2 2  

where 

b = (Aiixi)-l(Ai + A!.x. + Aikxk) 
1J J 

and 

c E (Aiixi) -1 (Aiixi + A..x. + Ai + A x ) 
1J J ik k 



Second, if the A. and Ab coefficients do not match, the model is not calculating 
the correct nominal value of the response because Ag and Ab are the adjusted averages 
of all responses. Also, they are the responses at the center point of the design 
(at xi = x. = xk = 0). No multiplicative correction is possible because at the zero level 

J 
of the independent variable the correction will have no effect. 

an additive correction A can be determined by equating the polynomials at the point in 
question. This would give 

If the coefficient inspection reveals that only one variable, say xi, is important, 

x:" = xi + A 

where 

with 

d = ( 2 x i + z )  

and 

2 e = ( A ~  - ~ b )  + ( A ~  - A;)x~ + (Aii - A;$X~ 

If more than one independent variable is important and also if  the constant terms 
(Ao and Ab) do not match, two or  more equations are required to determine the additive 
corrections that will force agreement. In this case, polynomials can be constructed for 
other responses, and these polynomials can also be equated. 

problem. The point is that corrective measures become much more logical when the 
polynomials are compared on a coefficient basis. 

Other corrective measures may suggest themselves, depending on the physical 
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APPENDIX B 

ORTHOGONAL COMPOSITE FACTORIAL DESIGNS 

Factorial designs are given for four, five, and six variables. 

TABLE IV. - FOUR-VARIABLE  DESIGN^ 

1 1 2 3 3 3 4 4 5 A  
3 2 4 1 3 5 2 4 3 B  

13 

22 

24 

31 

33 

35 

42 

44 

53 

CD 

a Codedlevel Level 

-6 = -1.4142 1 
-1.0 2 
0 3 
1.0 4 
1.4142 5 
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TABLE v. - FIVE-VARIABLE  DESIGN^. 

1 2 2 3 3 3  
3 2 4 1 3 5  

133 

222 

224 

242 

244 

3 13 

33 1 

333 

335 

353 

422 

424 

442 

444 

533 

ABC 

a Coded level Level 

- 6 =  -1.5960 1 
-1.0 2 
0 3 
1 .0  4 
1.5960 5 

4 4 5 D  
2 4 3 3  

37 38 

41 42 
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TABLE VI. - SIX-VARIABLE  DESIGN^ 

1 2 2 2 2 3  3 3  3 3 4 4 4 4 5 8  
3 2 2 4 4  1 3 3  3 5 2 2 4 4  3 B  
3 2 4 2 4 3 1 3  5 3 2 4 2 4 3 c  

133 

222 

224 

24 2 

244 

3 13 

331 

333 

335 

353 

422 

4 24 

442 

444 

533 

DE F 

a Coded level Level 

-6= -1.7606 1 
-1.0 2 
0 3 
1 .0  4 
1.7606 5 

These designs will give a response equation the same as equation (1). Coefficients are 
given by equations (2) to (6). 
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APPENDIX C 

SYMBOLS 

An 

Ah 

Ann 

D 

F 

K 

m 

n 

Q' 

Q1 

R2 

S 

h 

s 

X 

A 

X 

20 

first-order regression coef - 
ficient for experiment 

first-order regression coef- 
ficient for model 

second-order regression coef - 
ficient for experiment 

second-order regression coef - 
ficient for model 

thermal neutron diffusion 
coefficient 

thermal neutron flux pertur- 
bation factor 

constant in response equation 

total number of experiments 
or  calculations 

number of independent vari- 
ables 

dependent variable in response 
equation 

observed value of Q from an 
experiment or  calculation 

goodness -of -fit parameter 

source function in transport 
model 

source function in diffusion 
model 

slab thickness in example 
calculation 

space variable in example 
calculation 

independent variable in response xn 

x; -L 

equation 

fixed value of independent vari- 
able in an experiment or cal- 
culation 

A additive correction 

6 variable level required for or- 
tho gonality 

- 
average cosine of thermal neu- 

E-lO 
tron scattering angle 

thermal neutron total cross sec- 
tion 

thermal neutron absorption 'a 

' S  

'tr 

(J standard deviation 

cp nondirectional thermal neutron 

cross section 

thermal neutron scattering cross 
section 

thermal neutron transport cross 
section 

flux 

J/ directional neutron flux in trans- 
port model 

* 
sz direction of neutron flow in 

transport model 

Subscripts: 

i, j, k 

1 number of experiment 

independent variable indices 
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